SOA Design Patterns Reference Poster (Contributed by Jageshwar Tripathi, completesoa.blogspot.com)

I nventory I mplementation Foundational Service

resource?

Agnostic Capability (&)

How can multipurpose service logic be
made effectively consumable and

_________________ 1 r—-r————--—-_-—_-_—_-_—_-_—_—_—_ - —_———— —_—— e ——— ————

| EnterpriseInventory) Service Layers (en) | | Dual Protocols (en) Stateful Services) | IF Functional Decomposition (&) I

| How can services be delivered to How can the servicesin an | | How can asenviceinventory How can service state databe persisied and How can alarge business problem be |

| Az recomposition? inventory be oIgamzed overcome the limitations of its managed without consuming service runtime | solved without having to build a standalone |

Domain Inventory (n) based on functional | | canonical protocol while still resources? | | body of solution logic?

| How can services be delivered to common_aIIty? | | remaining standardized? Service Grid (chappel) | | Service Encapsulation () I

| maximize recomposition when Canonical Protocol () | | Canonical Resources ef) How can deferred service state data be scaled | How can solution logic be made available |

| EretesmidesE e ZEen e How can services be How can unnecessary and kept fault-tolerant? | asaresource of the enterprise? |

| g(;tr?/??ebﬁZrmalization g:ig{‘ned?to avoid protocol | | infrastructure resource disparity Inventory Endpoint e | | Agnostic Context (&) | |

mal (E) ng: | | beavoided? How can a service inventory be shielded from | | How can multipurpose service logic be

| How can aserviceinventory avoid Canonical Schema (&) | | State Repository (&) external access while still offering service | positioned as an effective enterprise I

| redundant servicelogic? How can services be How can service state databe capabilities to external consumers? | vesource? |

| Logic Centrallzanon (Erl) designed to avoid data model | | persisted for extended periods Cross-Domain Utility Layer () I | Non-Agnostic Context &) |
How can the misuse of redundant transformation’? | | without consuming service How can redundant utility logic be avoided | | How can single-purpose service logic be

|_ser_vice_|ogi_c beavoided>] |_runtimeresources? aorossdomain saviceinventories? | | positioned as an effective enterprise :

| |

: |

|

Inventory Centralization

Process Centralization (er)

How can abstracted business process logic be

centrally governed?
Schema Centralization (&)

How can service contracts be designed to avoid

Utility Abstraction ()
How can common non-business centric logic be
separated, reused, and independently governed?

Entity Abstraction (&)

Canonical Expression (er)
How can service contracts be
consistently understood and
interpreted?

M etadata Centralization (en)

composable?
L

redundant data representation? How can agnostic business logic be separated,

Policy Centralization (er)

How can policies be normalized and consistently

enforced across multiple services?
Rules Centralization ()

How can business rules be abstracted and centrally

governed?

Process Abstraction (&)
How can non-agnostic process logic be
separated and governed independently?

I
I
I
reused, and governed independently?
|
I
I
I

centrally published and governed?
Canonical Versioning ()

How can service contracts within the

same service inventory be versioned
with minimal impact?

: |
| |
| |

How can service metadata be I
| |
| |
| |
| |
|

Service Facade)

How can a service accommodate changes
toits contract or implementation while
allowing the core service logic to evolve
independently?

Redundant Implementation (&)

How can the reliability and availability of

| Legacy Wrapper &1, roy)

| How can wrapper services with non-

| standard contracts be prevented from
spreading indirect consumer-to-

| implementation coupling?

| Multi-Channel Endpoint (roy)

| How can legacy logic fragmented and
duplicated for different delivery channels

| be centrally consolidated?

| File Gateway (Roy)

| How can service logic interact with legacy
systems that can only share information by

| exchanging files?

—

How can agnostic, cross-entity composition logic

be separated, reused, and governed independently? |

Data M odel Transformation (er)
How can services interoperate when using
different data models for the same type of

Composition Autonomy (Erl)
How can compositions be implemented to
minimize loss of autonomy?

Atomic Service Transaction (Erl)

How can atransaction with rollback capability be

propagated across messaging-based services?
Compensating Service Transaction

(Utschig, Maier, Trops, Normann, Winterberg, Loesgen, Little)

How can composition runtime exceptions be
consistently accommodated without requiring
servicesto lock resources?

data?

Data Format Transfor mation (Little,
Rischbeck, Simon)

How can services interact with programs that
communicate with different data formats?
Protocol Bridging (Litte, Rischbeck, Simon)
How can a service exchange data with
consumersthat use different communication
protocol s?

a service be increased?

Service Data Replication (er)
How can service autonomy be preserved
when services require access to shared
data sources?

Partial State Deferral (er)

How can services be designed to optimize
resource consumption while still
remaining stateful ?

Partial Validation (orchard, Riley)
How can unnecessary data validation be
avoided?

Ul Mediator (Utschig, Maier, Trops,
Normann, Winterberg)

How can a service-oriented solution
provide a consistent, interactive user
experience?

"WO9'suRIRARCS MWW pue B10°Ssuie1Rdecs MWW 1ISIA ‘UOITRWLLIOJUI 10W 104
(8002 WBLAdOD ‘|leH sonuBId ‘|43 sewoy 1 Aq) sueired ubissd YOS 00q 8y woJj sueied Jo Bofered ayl ske|dsip Jesod siy L

Service Security

Service Governance

Service M essaging

Exception Shielding r = T T T 1 Security : :
| (Hogg, Smith, Chong, Hollander, I | Compatible Change (orchard, Riley) | === = ServiceMessaging &) .
| Kozaczynski, Brader, Delgado, Taylor, Wall, | How can a service contract be modified without Data Confidentiality (Hogg, Smith, How can services interoperate without forming
Siater, Imran, Cibraro, Cunningham) | | impacting consumers? | | Chong, Hollander, Kozaczynski, Brader, Delgado, persistent, tightly coupled connections?
I I-IOW can aserwce preyent the . I I Version |dentification (orchard, Riely) I | Taylor, Wall, Slater, Imran, Cibraro, Cunningham) M e$ag|ng M etadata (er)
| @sclowreofmformqnon about its | How can consumer's be made aware of service Howcandatawn.hIn ammgebe How can services be designed to process
| internal implementation when an | R ST e e | | protected so that it is not disclosed to activity-specific data at runtime?
' ? L g unintended recipients whilein transit? i
| exception occurs? | | Termination Notification (oreerd, rie) | | Data Ori in?ﬁ\uthentication . Service Agent &)
M essage Screening | | How can the scheduled expiry of a service contract | | st ChonggHo”an R — ad(er Y How can event-driven logic be separated and
| (KHozgag;;ﬂgl(tiI’l,B(Egg;?'g;g:ggfr’aylor’ —_ | | be cor_nmuni cated to consumer programs? | | Ddga;jo’ Tayl'or’ Wall. Siater, Imran, Cibraro, governed m@ependently_? | |
I Slater, Imran, Cibraro, Cunningham) I Service Refactoring (en) I Cunningham) . . I_ntermedlate Routing (Little, Rischbeck,
| How can aservice be protected | How can a service be evolved without impacting | How can a service verify that a message arg\(/)\;])can e) e e
| from malformed or maliciousinput? | | existing consumers? | | Or:Igl IEEES fr%m aknawn sender aendd theﬁ , e a my@sag o
Trusted Subsystem | | Service Decomposition (&) | | :r aen g?tmg7 e has not been tampered with in S essagirIg Kookt
| (Hogg, Smith, Chong, Hollander, | How can the granularity of a service be increased L . : . .
I Kozaczynski, Brader, Delgado, Taylor, Wall, | subseguent to itsimplementation? I | Direct Authentication (Hogg, Smith, HOW caliaSEvICEEmaA State!eSSWh”e
Slater, Imran, Cibraro, Cunningham) I P Capabili I | Chong, Hollander, Kozaczynski, Brader, Delgado, participating in stateful interactions?
I How can a consumer be prevented I roxy Lap . I |ty .(E”) - Taylor, Wall, Slater, Imran, Cibraro, Cunningham) Service Callback (Karmarkar)
from circumventing aserviceand | | How can a service subject to decomposition | | How can a service verify the credentials How Can 8 Servi ce communicate
| , — | continue to support consumers affected by the rovided by a consumer? .
| directly accessing itsresources? | decomposition? | | E K eé/ Authenticati asynchronously with its consumers?
- : - N roker uthentication (Hogg, : :
I (?—I%rgg\gnscrfn?trf) g;:gﬁtoﬁranguard I I Decomposed Capablllty (Erl) I | Smith, Chong, Hollander, Kozaczynski, Brader, ﬁgrvcl:;?(l;;:]ij?:;segrggg 2ngd (l:s;n;r;ar) ith
Kozaczynski, Brader, Delgado, Taylor, Wall, | | How can a service be desi gned to minimize the | | Delgado, Taylor, Wall, Siater, Imran, Cibraro, W car st thout th ee:j ‘ w
| Slater, Imran, Cibraro, Cunningham) | | chances of capability logic deconstruction? | | augwngggme)l service effidiently verif SErJrOVI ﬁe; [:r ar:g? n Olu ic?) need for
| How can servicesthat runin a | Distributed Capability (Erl) edentialsif th y y d prop Y processing fogic: _ _
i k be made available i ; ; | | consumer credentialsit the consumer an Asynchronous Queuing (Little, Rischbeck,
private networ | f a : :
| A R ————— | How can a service preserve its functional context | service do not trust each other or if the Simon)
| o | while aso fulfilling special capability processing | consumer requires access to multiple How can a service and its consumers
I_expos T I TR | | requirements? | | services?] accommodate isol ated failures and avoid

I
I
I
I
I
I
| Co-existent application of Asynchronous Queuing,
I
I
I
I
I
I

I Orchestration (e, Loesgen)

Co-existent application of Process Abstraction,
State Repository, Process Centralization, and
Compensating Service Transaction, can can be
further extended with Atomic Service Transaction,
Rules Centralization, and Data Modéel
Transformation.

Enterprise Service BUs (e, Little, Rischbeck,
Simon)

Intermediate Routing, and the Service Broker
compound pattern and can be further extended via
Reliable Messaging, Palicy Centralization, Rules
Centralization, and Event-Driven Messaging.
Service Broker (Little, Rischbeck, Simon)
Co-existent application of Data Model
Transformation, Data Format Transformation, and
Protocol Bridging..

Canonical Schema Bus (utschig, Maier,
Trops, Normann, Winterberg, Erl)

Co-existent application of Enterprise
Service Bus, Decoupled Contract, Contract
Centralization, and Canonical Schema.
Official Endpoint ()

Joint application of Logic Centralization
and Contract Centralization.

Federated Endpoint Layer (Erl)
Joint application of Official Endpoint,
Service Normalization, Canonical Protocol,
Canonical Schema, and Canonical
Expression.

Three-Layer Inventory ()

Joint application of Utility Abstraction,
Entity Abstraction, and Process
Abstraction.

—

| Decoupled Contract (ern)

How can a service express its capabilities
independently of itsimplementation?
Contract Centralization ()

How can direct consumer-to-implementation
coupling be avoided?

Contract Denormalization (er)

How can a service contract facilitate

consumer programs with differing data
exchange requirements?

Concurrent Contracts (erl)

How can a service facilitate multi-consumer
coupling requirements and abstraction
concerns at the same time?

Validation Abstraction ()
How can service contracts be designed to
more easily adapt to validation logic

unnecessarily locking resources?

Reliable M essaging (ittle, Rischbeck, Simon)
How can services communicate reliably when
implemented in an unreliable environment?
Event-Driven M essaging (Little, Rischbeck,
Simon)

How can service consumers be automatically
notified of runtime service events?

Capability Composition ()

How can a service capability solve a problem
that requires logic outside of the service
boundary?

Capability Recomposition (&r)

How can the same capability be used to help
solve multiple problems?

