
Logical Inventory Layer

Utility Abstraction (Erl)

How can common non-business centric logic be 
separated, reused, and independently governed?

Entity Abstraction (Erl)

How can agnostic business logic be separated, 
reused, and governed independently?

Process Abstraction (Erl)

How can non-agnostic process logic be 
separated and governed independently? 

Inventory Centralization 

Process Centralization (Erl)

How can abstracted business process logic be 
centrally governed? 
Schema Centralization (Erl)

How can service contracts be designed to avoid 
redundant data representation? 
Policy Centralization (Erl)

How can policies be normalized and consistently 
enforced across multiple services? 
Rules Centralization (Erl)

How can business rules be abstracted and centrally 
governed? 

Inventory Governance 

Canonical Expression (Erl)

How can service contracts be 
consistently understood and 
interpreted? 
Metadata Centralization (Erl)

How can service metadata be 
centrally published and governed? 
Canonical Versioning (Erl)

How can service contracts within the 
same service inventory be versioned 
with minimal impact?

Service Implementation

Service Facade (Erl)

How can a service accommodate changes 
to its contract or implementation while 
allowing the core service logic to evolve 
independently? 
Redundant Implementation (Erl)

How can the reliability and availability of 
a service be increased? 
Service Data Replication (Erl)

How can service autonomy be preserved 
when services require access to shared 
data sources? 
Partial State Deferral (Erl)

How can services be designed to optimize 
resource consumption while still 
remaining stateful? 
Partial Validation (Orchard, Riley)

How can unnecessary data validation be 
avoided? 
UI Mediator (Utschig, Maier, Trops, 
Normann, Winterberg)

How can a service-oriented solution 
provide a consistent, interactive user 
experience? 

Foundational Service

Functional Decomposition (Erl)

How can a large business problem be 
solved without having to build a standalone 
body of solution logic? 
Service Encapsulation (Erl)

How can solution logic be made available 
as a resource of the enterprise? 
Agnostic Context (Erl)

How can multipurpose service logic be 
positioned as an effective enterprise 
resource? 
Non-Agnostic Context (Erl)

How can single-purpose service logic be 
positioned as an effective enterprise 
resource? 
Agnostic Capability (Erl)

How can multipurpose service logic be 
made effectively consumable and 
composable? 

Legacy Encapsulation

Legacy Wrapper (Erl, Roy)

How can wrapper services with non-
standard contracts be prevented from 
spreading indirect consumer-to-
implementation coupling? 
Multi-Channel Endpoint (Roy)

How can legacy logic fragmented and 
duplicated for different delivery channels 
be centrally consolidated? 
File Gateway (Roy)

How can service logic interact with legacy 
systems that can only share information by 
exchanging files? 

Inventory Implementation 

Dual Protocols (Erl)

How can a service inventory 
overcome the limitations of its 
canonical protocol while still 
remaining standardized? 
Canonical Resources (Erl)

How can unnecessary 
infrastructure resource disparity 
be avoided? 
State Repository (Erl)

How can service state data be 
persisted for extended periods 
without consuming service 
runtime resources? 

Stateful Services (Erl)

How can service state data be persisted and 
managed without consuming service runtime 
resources? 
Service Grid (Chappell)

How can deferred service state data be scaled 
and kept fault-tolerant? 
Inventory Endpoint (Erl)

How can a service inventory be shielded from 
external access while still offering service 
capabilities to external consumers? 
Cross-Domain Utility Layer (Erl)

How can redundant utility logic be avoided 
across domain service inventories? 

Foundational Inventory

Enterprise Inventory (Erl)

How can services be delivered to 
maximize recomposition? 
Domain Inventory (Erl)

How can services be delivered to 
maximize recomposition when 
enterprise-wide standardization is 
not possible? 
Service Normalization (Erl)

How can a service inventory avoid 
redundant service logic? 
Logic Centralization (Erl)

How can the misuse of redundant 
service logic be avoided? 

Service Layers (Erl)

How can the services in an 
inventory be organized 
based on functional 
commonality? 
Canonical Protocol (Erl)

How can services be 
designed to avoid protocol 
bridging? 
Canonical Schema (Erl)

How can services be 
designed to avoid data model 
transformation?

Transformation
Data Model Transformation (Erl)

How can services interoperate when using 
different data models for the same type of 
data? 
Data Format Transformation (Little, 
Rischbeck, Simon)

How can services interact with programs that 
communicate with different data formats? 
Protocol Bridging (Little, Rischbeck, Simon)

How can a service exchange data with 
consumers that use different communication 
protocols?

Composition Implementation
Agnostic Sub-Controller (Erl)
How can agnostic, cross-entity composition logic 
be separated, reused, and governed independently? 
Composition Autonomy (Erl)
How can compositions be implemented to 
minimize loss of autonomy? 
Atomic Service Transaction (Erl)
How can a transaction with rollback capability be 
propagated across messaging-based services? 
Compensating Service Transaction
(Utschig, Maier, Trops, Normann, Winterberg, Loesgen, Little)

How can composition runtime exceptions be 
consistently accommodated without requiring 
services to lock resources? 

SOA Design Patterns Reference Poster (Contributed by Jageshwar Tripathi, completesoa.blogspot.com)

T
his poster displays the catalog of patterns from

 the book S
O

A
 D

esign P
atterns (by T

hom
as E

rl, P
rentice H

all, C
opyright 2008). 

For m
ore inform

ation, visit w
w

w
.soapatterns.org

and w
w

w
.soapatterns.com

. 



Service Security
Exception Shielding 
(Hogg, Smith, Chong, Hollander, 
Kozaczynski, Brader, Delgado, Taylor, Wall, 
Slater, Imran, Cibraro, Cunningham)

How can a service prevent the 
disclosure of information about its 
internal implementation when an 
exception occurs?

Message Screening 
(Hogg, Smith, Chong, Hollander, 
Kozaczynski, Brader, Delgado, Taylor, Wall, 
Slater, Imran, Cibraro, Cunningham)

How can a service be protected 
from malformed or malicious input?

Trusted Subsystem 
(Hogg, Smith, Chong, Hollander, 
Kozaczynski, Brader, Delgado, Taylor, Wall, 
Slater, Imran, Cibraro, Cunningham)

How can a consumer be prevented 
from circumventing a service and 
directly accessing its resources?

Service Perimeter Guard 
(Hogg, Smith, Chong, Hollander, 
Kozaczynski, Brader, Delgado, Taylor, Wall, 
Slater, Imran, Cibraro, Cunningham)

How can services that run in a 
private network be made available 
to external consumers without 
exposing internal resources?

Service Contract 

Decoupled Contract (Erl)

How can a service express its capabilities 
independently of its implementation? 
Contract Centralization (Erl)

How can direct consumer-to-implementation 
coupling be avoided? 
Contract Denormalization (Erl)

How can a service contract facilitate 
consumer programs with differing data 
exchange requirements? 
Concurrent Contracts (Erl)

How can a service facilitate multi-consumer 
coupling requirements and abstraction 
concerns at the same time? 
Validation Abstraction (Erl)

How can service contracts be designed to 
more easily adapt to validation logic 
changes?

Service Governance

Compatible Change (Orchard, Riley)

How can a service contract be modified without 
impacting consumers?
Version Identification (Orchard, Riely)

How can consumers be made aware of service 
contract version information? 
Termination Notification (Orchard, Riley)

How can the scheduled expiry of a service contract 
be communicated to consumer programs? 
Service Refactoring (Erl)

How can a service be evolved without impacting 
existing consumers? 
Service Decomposition (Erl)

How can the granularity of a service be increased 
subsequent to its implementation? 
Proxy Capability (Erl)

How can a service subject to decomposition 
continue to support consumers affected by the 
decomposition? 
Decomposed Capability (Erl)

How can a service be designed to minimize the 
chances of capability logic deconstruction? 
Distributed Capability (Erl)
How can a service preserve its functional context 
while also fulfilling special capability processing 
requirements? 

Service Messaging

Service Messaging (Erl)

How can services interoperate without forming 
persistent, tightly coupled connections? 
Messaging Metadata (Erl)

How can services be designed to process 
activity-specific data at runtime?
Service Agent (Erl)

How can event-driven logic be separated and 
governed independently? 
Intermediate Routing (Little, Rischbeck, 
Simon)

How can dynamic runtime factors affect the 
path of a message? 
State Messaging (Karmarkar)

How can a service remain stateless while 
participating in stateful interactions? 
Service Callback (Karmarkar)

How can a service communicate 
asynchronously with its consumers? 
Service Instance Routing (Karmarkar)

How can consumers contact and interact with 
service instances without the need for 
proprietary processing logic? 
Asynchronous Queuing (Little, Rischbeck, 
Simon)

How can a service and its consumers 
accommodate isolated failures and avoid 
unnecessarily locking resources? 
Reliable Messaging (Little, Rischbeck, Simon)

How can services communicate reliably when 
implemented in an unreliable environment? 
Event-Driven Messaging (Little, Rischbeck, 
Simon)

How can service consumers be automatically 
notified of runtime service events? 

Capability Composition  

Capability Composition (Erl)

How can a service capability solve a problem 
that requires logic outside of the service 
boundary? 
Capability Recomposition (Erl)

How can the same capability be used to help 
solve multiple problems?

Service Interaction 
Security
Data Confidentiality (Hogg, Smith, 
Chong, Hollander, Kozaczynski, Brader, Delgado, 
Taylor, Wall, Slater, Imran, Cibraro, Cunningham)

How can data within a message be 
protected so that it is not disclosed to 
unintended recipients while in transit? 
Data Origin Authentication (Hogg, 
Smith, Chong, Hollander, Kozaczynski, Brader, 
Delgado, Taylor, Wall, Slater, Imran, Cibraro, 
Cunningham)

How can a service verify that a message 
originates from a known sender and that 
the message has not been tampered with in 
transit? 
Direct Authentication (Hogg, Smith, 
Chong, Hollander, Kozaczynski, Brader, Delgado, 
Taylor, Wall, Slater, Imran, Cibraro, Cunningham)

How can a service verify the credentials 
provided by a consumer? 
Brokered Authentication (Hogg, 
Smith, Chong, Hollander, Kozaczynski, Brader, 
Delgado, Taylor, Wall, Slater, Imran, Cibraro, 
Cunningham)

How can a service efficiently verify 
consumer credentials if the consumer and 
service do not trust each other or if the 
consumer requires access to multiple 
services? 

Common Compound Design

Orchestration (Erl, Loesgen)

Co-existent application of Process Abstraction, 
State Repository, Process Centralization, and 
Compensating Service Transaction, can can be 
further extended with Atomic Service Transaction, 
Rules Centralization, and Data Model 
Transformation. 
Enterprise Service Bus (Erl, Little, Rischbeck, 
Simon)

Co-existent application of Asynchronous Queuing, 
Intermediate Routing, and the Service Broker 
compound pattern and can be further extended via 
Reliable Messaging, Policy Centralization, Rules 
Centralization, and Event-Driven Messaging. 
Service Broker (Little, Rischbeck, Simon)

Co-existent application of Data Model 
Transformation, Data Format Transformation, and 
Protocol Bridging..

Canonical Schema Bus (Utschig, Maier, 
Trops, Normann, Winterberg, Erl)

Co-existent application of Enterprise 
Service Bus, Decoupled Contract, Contract 
Centralization, and Canonical Schema. 
Official Endpoint (Erl)

Joint application of Logic Centralization 
and Contract Centralization. 
Federated Endpoint Layer (Erl)
Joint application of Official Endpoint, 
Service Normalization, Canonical Protocol, 
Canonical Schema, and Canonical 
Expression. 
Three-Layer Inventory (Erl)

Joint application of Utility Abstraction, 
Entity Abstraction, and Process 
Abstraction.


